HW3, Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let R be a ring with more than one element such that for each $a \in R$ there is a unique $b \in R$ such that aba = a. Prove:

- a. R has no zero divisors.
- b. If $c \in R$ and $d \in R$ such that cdc = c, then dcd = d
- c. R has an identity
- d. R is a division ring
- (ii) Let R be an ideal of \mathbb{Z} . Show that $I = k\mathbb{Z}$ for some integer k.
- (iii) Freshman Dream Let R be a commutative ring such that char(R) = p for some prime p. Let $n \ge 1$ be a positive integer and $a, b \in R$. Prove that $(a + b)^{p^n} = a^{p^n} + b^{p^n}$. (Hint: use math induction and note that $(d^m)^v = d^{mv}$)
- (iv) Let I be a subset of R = Z[X] such that the constant term of each element of I "lives" in 5Z. Prove that I is a prime ideal of R.

Faculty information

Ayman Badawi, Department of Mathematics & Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.

E-mail: abadawi@aus.edu, www.ayman-badawi.com