HW3 , Math 531, Spring 2014

Ayman Badawi

QUESTION 1. (i) Let R be a ring with more than one element such that for each $a \in R$ there is a unique $b \in R$ such that $a b a=a$. Prove:
a. R has no zero divisors.
b. If $c \in R$ and $d \in R$ such that $c d c=c$, then $d c d=d$
c. R has an identity
d. R is a division ring
(ii) Let R be an ideal of \mathbb{Z}. Show that $I=k \mathbb{Z}$ for some integer k.
(iii) Freshman Dream Let R be a commutative ring such that $\operatorname{char}(R)=p$ for some prime p. Let $n \geq 1$ be a positive integer and $a, b \in R$. Prove that $(a+b)^{p^{n}}=a^{p^{n}}+b^{p^{n}}$. (Hint: use math induction and note that $\left.\left(d^{m}\right)^{v}=d^{m v}\right)$
(iv) Let I be a subset of $R=Z[X]$ such that the constant term of each element of I "lives" in $5 Z$. Prove that I is a prime ideal of R.

Faculty information

Ayman Badawi, Department of Mathematics \& Statistics, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
E-mail: abadawi@aus.edu, www.ayman-badawi.com

